skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Johnson, W P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This study investigates the impact of initial injection conditions on colloid transport and retention in porous media. Employing both uniform and flux‐weighted distributions for the initial colloid locations, the research explores diverse flow scenarios, ranging from simple Poiseuille flow to more complex geometries. The results underscore the pivotal role the injection mode plays on the shape of colloid retention profiles (RPs), particularly those that display anomalous non‐exponential decay with distance. Broadly, uniform injection yields multi‐exponential profiles, while flux‐weighted injection can lead to nonmonotonic profiles in certain conditions. The study identifies preferential flow paths as a key factor in producing nonmonotonic RPs. Notably, variations in fluid velocity, colloid size, and ionic strength affect attachment rates near the inlet but do not significantly alter the qualitative transition between multi‐exponential and nonmonotonic profiles. The study emphasizes that the chosen injection mode dictates retention profile shapes, highlighting its crucial role in porous media colloid transport. These insights provide a possible partial explanation of previously observed anomalous transport behaviors, urging consideration of injection conditions in interpretations of experiments, where they can be difficult to accurately control and measure with high precision. 
    more » « less